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Progress Summary

During the period December 23, 1997 and December August 31, 2004, we accomplished

the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade

flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5 th

order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured

code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes

use of URANS and DES models. The current report provides a description of

methodologies used in the codes.



1. Introduction

Flow transition plays an important role in turbomachinery applications. The majority of

boundary layer flows in turbomachines involve flow transition under the effects of

freestream turbulence, diverse pressure gradients, wide range of Reynolds numbers, flow

separation, and unsteady wake-boundary layer interactions.

Prediction of this type of complex flows is an important element in analysis and

performance evaluation of gas turbine engine components and ultimately in the design of

more efficient jet engines. Especially, in low pressure turbine applications prediction of

transition becomes pivotal in terms of efficiency. For low pressure turbines the flow is

mostly turbulent at the high Reynolds number conditions encountered at take off and the

efficiency is at its design maximum. However, at high altitudes and cruise speeds which

correspond to lower Reynolds number conditions, unpredicted losses and substantial

drops in efficiency have been observed. These losses are attributed to flow separation on

the suction surface of the turbine blades. At low Reynolds numbers, the boundary layers

on the airfoil surface have a tendency to remain laminar and hence the flow may separate

before it becomes turbulent, causing increase in fuel consumption and drop in efficiency.

The impact of such losses is directly felt on the operation costs. It has been estimated that

a 1% improvement in the efficiency of a low pressure turbine would result in a saving of

$52,000 per year on a typical airliner.

In order to calculate the losses and heat transfer on various components of gas turbine

engines, and to be able to improve component efficiencies and reduce losses through

better designs, accurate prediction of transitional boundary layers is essential. When one

deals with a complex fluid phenomena like a transition, separation and turbulence,

several hundred millions grid points are needed to resolve boundary layers and other flow

structures correctly. We have started to develop technology to make such large scale

simulations not only possible at supercomputing centers like NCSA or NAS but on

inexpensive, high-performance clusters of PCs, or "Beowulfs". These clusters are

soecialized for CFD applications, u._ing the, novel annronch that th_ hardxxznr_ nne_rnfino

system, and application code are optimized together rather than separately. A Honorable

Mention in the Price/Performance Category of the Gordon Bell Prize was awarded for

this approach at IEEE/ACM SC2000 Conference on High-Performance Networking and

Computing.



Severalturbulencetest caseshavebeencomputedandanoverview of the results is given.

2. Code Descriptions

(1) A description of LESTool is give in Appendix I.

(2) A description of UNCLE is given in Appendix II.
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Appendix I - LESTool



LESTooh A CFD Program for 3D unsteadyflows

1. LES Turbulence Models

1.1 LES - Filtered Equations

Large-eddy simulation (LES) is based on the definition of a filtering operation: a filtered

(or large-scale, or resolved) quantity, denoted by an over bar, is defined as

f(x)= If(x')G(x,x')dx',
D

where D is the entire domain and G is the filter function, which determines the size and

structure of the small scales. For compressible flow the large-scale equations are

operationally simpler ifFavre filtered quantities are used. A Favre filtered variable is

defined as f = pf / _ . Applying the spatial filter G to the governing equations leads to

aP +&_-7(P_TJ):°at

at F .(_zTfiJ)=-_- 0xj

+ [_(P_+p/_)_,,l=-aq--L_+_°-L-(ei,_,)
at _j _j

I_ OqSGS 1 0 . sGs-.
- Cp-----:_l-e-z-:----_rji u,)-

where a perfect-gas equation of state is assumed. The filtered stress tensor, r-_,

are given by

Here S_ is the strain-rate tensor defined by

2!vOx , ax,



Thefiltered heatfluxes, _j = -kOTlOxj and_j = -[cOf'lOxj.

All boxedtermsmustbemodeled.Thefollowing list definesmodelingassumptionsfor
all six termswhich haveto bemodeled.

1.This first boxedtermis thedivergenceof thesubgrid-scale(SGS)stresses,

= _(uiuj -_fij), and has to be modeled. Note that the trace of the SGS stresses in

compressible flows cannot be included in the modified pressure and requires separate

modeling. The modeling will be described in the next section.

2. This 2 nd boxed term appears because of the nonlinearity of the viscous stresses and in

invariably neglected.

SGS
3. The SGS heat flux model for qj = ,_(u_-_jT) will be described in the next section.

4. This term, Dj = -(ujuku k -u-j UkUk), is similar to the turbulence diffusion that appears

in the subgrid-scale kinetic energy equation.

5. This term, 0(_-s -_j)/0x j, is neglected because of the same reasons as 2.

6. This term, O(rj, u, -girl,)/0x j, is the viscous SGS work and is neglected.

To summarize the following quantities will be be modeled in our implementation:

sos
1. SGS stresses, r 0

SGS
2. SGS heat flux, qj .

1.2 Dynamic SGS model

SGS
For the left-hand side a trace-free Smagorinsky eddy viscosity model is used for r0 .

However the eddy viscosity coefficient will be a function of the instantaneous flow
variables. Let

sGs 1 2

r_ --_q 60 =-2c A2N ;

where S_ is the trace-free rate of the strain tensor

60 -

and S is the norm of Si,



The isotropic part of the SGS Reynolds stress tensor

separately. It is parameterized by the expression:

= 2C,,_A21S2qZ

To compute C,, the following equation is used:

q2 = rkk has to be modeled

pu, uj-" - pu,.._puj - 2C, 2 2 -A 2 ^ 2

P

Germano et al. [5] showed that expressions similar to the ones multiplying C, can

become zero. Therefore an averaging procedure is needed to make the determination of

the SGS coefficients well conditioned. It is assumed that C, is independent of the

directions in which the flow is homogeneous. Volume averaging leads to

G A2= .. 2

2 -

To obtain C, we use the following model

T_j- =-2C_A S-"

This leads to

L 0= , -2C,OA " "+2CA 2 " -'

_ 1 L,,8 ° + 2CA2M0
3

with M o

Contracting of M,j which was recommended by Lilly is outlined below. Since equation

for L0 represents six independent equations in one unknown, its error can be minimized

by applying a least squares approach. Define G as

N2

By setting OG/OC = 0, C is evaluated as



= _1 g

where _ denotes a spatial averaging operation.

1.3 DES model

The DES turbulence model is based on the blending of RANS and LES to provide a

model that can accurately predict unsteady flows without requiring high-precision grids
near the walls. A RANS turbulence model is used to simulate the turbulence within the

boundary layer, gradually subsuming into the LES model as one moves away from the

wall. Further details on this technique can be found in [15], [14] and others. The RANS

turbulence model used in LESTool is the one-equation Spalart-Allmaras model,

where

=cb, fo3n+ fo2_ ,:+lc.(V,:.v_).

L=cwlfw ,f_, Z3+Co1,£2 1 cv2 ,

1
fo3=-(1- L_)(I+ LlZ), z;-,

Z v

/6 ' ' g = r + cw2(r 6 - r),r = _2d2,f_=g g6 +cw3

with the coefficients given below

Cbl = 0.1355,Cb2 = 0.622,% 1 = 7.1,% 2 = 5.0,% I = Cbl/_C 2 + (1 + Cb2)/O- ,

c,2=0.3,Cw_=2,_=2/3,_=o.41,n=[v×_ I,
and d is the distance to the nearest wall. Note that this formulation does not include the

trip functions. Large values of r can be truncated at 10 or so. The turbulent viscosity for

the momentum equations is found from 1.', = fo_. For the DES approach the length scale

d is changed into

d ° = min(d, max(Ax, Ay, Aa)C,)

with C_ = 0.65 . This gives the turbulence model behavior near the wall and LES type

behavior away from the wall

2. Numerical method

The compressible Navier-Stokes equations are discretized using an iterative diagonal

dominant ADI (DD-ADI) algorithm that can be written in the following form:



[D<+AtL+A<+A,sk]<w=Rs-ss"
The right-hand side is approximated by the newly develop ENO-Vade method [ 17] for the

convective flux and sixth-order central for the diffusive terms. The basic algorithm is the

following. First the flux at each cell face is computed as shown below

= f(Ui+l/2 )_ A4+1/2 (gi+l/2 _ gi+l/2)L

Quantities with the superscript H are computed using a 8th-order central interpolation

method. For the quantities with the superscript R or L the standard ENO-interpolation

[6]. Than the flux is differentiated using a cell centered Pade formula [10]:

ctgti-I +¢_i + ct¢_+l = a ¢ti+l/2- ¢_i-'/2 -t-b ¢f'i+3/2- ¢t'-3/2
h 3h

The left-hand side is approximated by a lower-order method. The high order solution can

be achieved by performing inner iterations since the order of accuracy is not affected by
low order treatment of the left-hand side.

The proposed algorithm has the following form:

(DL-pAtLL)d((_Ul)=.DL[(8U3)m-l- (SUI)m-I]

(DL+ AtL_)a(aU2)= Dt [(6U')m-(6U2)m-']

(D L + AtL_)d(dU3)= D L

This algorithm is easily parallelizable because

plane by plane. The outline of the algorithm is

[(au_) _ - (au3) --' ]

we loop trough a three dimensional array

the following:

1. for each k: solve equations in i and j planes.

2. for each j: solve equations in k and i planes

3. for each i: solve equations j and k planes

This means after completion of the above algorithm we have already completed two

iterations. From our experience three to four iterations are needed for each time-step to

reach the required accuracy.

Fortran 90 was chosen as the programming language for this project because of the new

powerful array syntax, the addition of derived types and the module concept. The code

has been developed based on an object-oriented "' ' ..... to -" ..... ':*_" +" ...... :+'^-metnoutJlogy 81111plllff HIC LIalI_ItlUII

from the Cartesian implementation to an implementation for general coordinates and

chimera-type overlapping grids. The new features of Fortran 90 like abstract data types or

generic programming support an object-oriented programming style even though it is not

designed to be an object-oriented language.



3. ParaUelization

3.1 Shared Memory parallel approach

The LESTool code was parallelized in a straightforward manner: The code was compiled

with the -mp option to enable parallelism in the compile phase. This was combined with

placing OpenMP compiler directives, which instruct the compiler to generate code that

will execute in parallel.

These directives were placed at key spots within the code for the greatest parallel

efficiency. This resulted in a decomposing of the 3D problem into groups of 1D lines,

with each group assigned to a dedicated processor.

The efficiency of the parallel decomposition was enhanced by the use of the first touch

policy which is specific to the SGI Origin 2000. This means that memory allocated is

physically placed on the processor which touches the memory location first. This means

that all large three dimensional blocks of memory where initialized in planes of constant

k to get a memory distribution which is favorable for our algorithmic design (see figure

1).

nk I

ni

Figure 1 : Partitioning of the data along the k-axis

Since we target shared memory computers there is no explicit data redistribution needed.

Instead we split up the k -sweeps among the processors by partitioning work along the y

-axis (fig. 2). This is much simpler and easier to implement compared to the distributed

memory concept.

nk

nj

ni

]
Ik

Figure 2: Sweep along the zx -planes



3.2 Distributed memory approach

In order to achiever better portability and performance on a wider range of computational

platforms a distributed approach was also implemented. The parallel structure of the

distributed version of LESTool is based on splitting the computational grid into sub-

blocks, which are then distributed to each processor (figure 3). For a complex geometry,

this is a nontrivial exercise where an uneven load-balance across different processors

could significantly reduce the computational efficiency of the overall code. The

partitioning of the grid into sub-blocks is performed independently of the grid generation,

using virtual partitions to define the domains corresponding to each processor. The

current algorithm governing the partition process is based on spectral recursive bisection

in conjunction with a small database of the computational speeds associated with each

node. The splitting is performed as a preprocessing task, generating a file that maps the

grid sub-blocks onto the processors. This file is the only difference between performing a

serial computation and a parallel computation on a distributed machine.
Grid block

virtual block boundaries

dummy points

Figure 3: Communication pattem for the distributed approach



Communications between the grid sub-blocks occurs when the sub-blocks exchange data

about the flow variables at the boundaries. As show in figure 3, the flow variables on the

edge of one grid block are communicated to the dummy points of the neighboring grid

block, and vice versa. LESTool requires such a communication step after each update, or

sub-iteration, of the flow variables. The low-level implementation of the communication

between the sub-blocks uses a MPI-based communications system. The communication

model is a mailbox algorithm where the data is sent in a non-blocking communication

mode as early as possible.

4. Accuracy and Performance of LESTool

4.1 Accuracy of the ENO-Pade method

In a previous proposal a fifth-order upwind scheme has been proposed to simulate flow

around a low pressure turbine. This method showed too much numerical dampening so

that the transition and separation on the low-pressure turbine couldn't be simulated. In

order to develop a code suitable for transition and turbulence a new numerical method -

the ENOPade method - was developed [17]. This method combines the stability of the

ENO scheme with the high-order accuracy of the Pade method. Several test cases have

been computed and the damping of the new scheme is much lower as you can see below

from one test case. This case consists of the unsteady advection of a vortex in a uniform

flow. Here the capabilities of the different numerical schemes to accurately advect the
vortex structures are tested which is critical to LES/DNS simulations.

-5 ..... T.O. .... T-6 ..... T-12 ....

-5 0 5 10 15
X

Figure 4: Contour lines ofvorticity magnitude at three time intervals of ENO-Pade
method.
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Figure 5: Swirl velocities of the vortex along y=0 at T=12



4.2 Performance Results

4.2.1 Single processor performance tuning

The key point on cache based architectures to achieve high floating point performance is

cache-awareness of the algorithm. This stage of tuning is very important because efficient

utilization of the cache architecture assures good overall performance. Single processor

performance is the basic step to get good overall performance for the parallel

computation.

During the development of the code special care was taken by placing variables which

are used concurrently in the calculation close together in the main memory. One major

detail is that the first index in the data arrays is used for addressing the different

components of global variables, such as conservative variables. This is contrary to a

vector architecture, where the index for a variable is normally addressed by the last index

in an array. The data is copied into one-dimensional scratch arrays which fit into the

second level cache. The main algorithm is performed on these scratch arrays which have

a memory layout and access pattern (stride one) optimal for the cache architecture. This

measure alone resulted in a floating-point performance of 60 MFLOPS.

To achieve further speedup of the code, the main bottle necks identified were the

tridiagonal and block-tridiagonal matrix solvers. To increase the utilization of memory

bandwidth, all arithmetic operations involving the 5x5 block matrices, used in block

tridiagonal and periodic block tridiagonal solvers, were unrolled. This resulted in a much

longer and less desirable code, but the performance results outweigh this disadvantage.

The LESTool code achieves a floating-point performance of about 120 MFLOP/s on a

180 MHz Origin 2000. We consider this a very satisfactory performance.

Single processor run times for a single test case sufficiently large so that it does not fit in

the L2 cache of all our CPUs has been chosen. The runtime of the code / time step is

reported in table 1. The LosLobos results (733 MHz Pentium III) are much worse than

the Athlon results - this is probably related to (2 computations/2 data transfers per cycle).

However, we are not absolutely confident that this is the optimal possible performance of

LESTool on LosLobos, and as such subsequent results will emphasize the KLAT2 and
KFC1 outcomes.

Table 1" Execution time in seconds on different Linux platforms for a single time step for

the 643 test case

Compiler
Gcc-3.2700 MHz Athlon

733 MHz Egcs-2.9.1.66 123s
Pentium III

Gcc-2.96 22s1.5GHz Athlon
MP

j Double Precision
37s

t__U_ U _1 u_ooum

$625

$2930

$750

I
I _,, i _1.,_

3030

18170

2240



4.2.20penMP performance tuning

In figure 6, the same test case with the improved fine-grain parallelization is shown. The

removal of the barriers gives a much better speedup and provides a better performance of

the fine-grain parallelization. The program scales better for larger number of shared

processors. However, there still seems to have a limit on the number of the processor

used for the fine-grain parallelization. Since the memory is distributed in planes of

constant k over the available processors using more than 32 processors is no longer

advantageous. By choosing a much larger test case of 2563 grid points, as also shown in

figure 6 by the dashed line, it can be seen that because of a larger computational load per

processor the performance scales much better. For this case, the program performs well

64
up to 64 processors.

Figure 6:

56 - - linear
3 • .

O----E) 64 9nd points J /.
48 _- -- _ 256_grid points J .,- /

,_ - - ¢, 643 not opti_

40 /'//"/

_ 32

16

0
0 8 16 24 32 40 48 56 64

number of processors

Speedup with reduced synchronization and orphaned OpenMP directives

4.2.3 Parallel performance

In order to achieve a reasonable throughput the wall time for our computations with

LESTool must be at most on the order of 10s / time step. A comparison of the wall times
for the three different test cases follows

In figure 7 the wall times are compared for KLAT2 and KFC 1. The performance of

KFC 1 is obviously better than that of KLAT2 because of the higher clock frequency. The

clock frequency of KFC1 is double than that of KLAT2 but the speed of LESTool on

KFC 1 is obviously not twice compared to that on KLAT2. Here, the memory system

.... u v_:c,1 hat _ pc'v1 nnn memory, system, whereas KLAT2plays an important role as _,.,,--,,_, ............... .

has a PC100 memory system. Our goal to reach a time of less than 10s / time step is

already reached on two processors on KFC1, while for KLAT2 it takes about six

processors to come into the same total performance range
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Figure 7: Wall clock time on KLAT2 and KCF1 for the 643 case

The 1283 case is much more demanding. In this case it takes about ten nodes or twenty

processors on our dual processor machine KFC 1 to obtain a wall clock time under 10s.

For KLAT2 forty processors are needed to obtain the desired computational speed. Note

that for this example KFC 1 does achieve twice the speed of KLAT2.

5O

ta, 4°
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I_ 30

._ 20

0_ ''' I ........ I ..........
I/

processors

Figure 8: Wall clock time on KLAT2 and KCF1 for the 1283 case

The 1963 case severely stresses our cluster computers. Here we cannot reach the 10s

mark on either of the clusters. For KFC1, we can achieve less than 20s / time step on 36

processors, or twice tl chievable is 22.7s.

60

om.50
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_- 30

% --I

"_ 20
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N ii ...... I ......... I ......... l,,,,,,,,tt ...... ,,,h,l ...... I ......... }......... I .......
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processors

Figure 9: Wall clock time on KLAT2 and KCF1 for the 1963 case



KFC1 has a three-way channel-bonded network. The code scales well for all three test

cases as shown in figure 10. Note that we could run the single processor version for the

1283 but the performance was so low because of swapping that we decided to scale the

larger cases to the minimum number of processors on which the case could reasonable

run. Note that the sizeable drop in performance for 34 processors in all three cases. This

is related to poor load balance. The only way we can divide our grid is in two slices in j-

direction and seventeen slices in the k-direction. Given the cubical symmetry of this

problem, the best subdivision is a equal number of cuts in the i, j, k direction. An

example for an optimal partitioning is the case for 16 processors. Each sub-block consists

of 163 grid points. This example shows the importance of the partitioning on the parallel

performance of LESTool.

5O

4O

3O

20
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%

Figure 10: Speedup on KFC1 for the
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KLAT2 has a FNN network architecture which is optimized for next neighbor
communication. LESTool scales even better on KLAT2 than it does on KFC 1 for all

three test cases as shown in figure 11. Note that a similar effect caused by uneven load

splitting can be seen on this machine as well.

70 I I I I I I
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Figure 11" Speedup on KLAT2 for the 643, 1283 and 1963 cases
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5. DNS of homogeneous turbulence

The Direct Numerical Simulations (DNS) of decaying isotropic turbulence were
presented by Blaisdell et al. [2]. The Blaisdell's DNS initial spectrum of case ia64f was
A conditions generated using Crecomp [4] are used as the input for LESTool. The
velocity fields needed for LESTool are given by Crecomp in such a way that irrespective
of the grid density, the energy spectrum produced has the same energy for all the initial
spectra. The rms velocities are taken as the input decides the total energy under the curve.
This energy is divided across the range of wavelengths available.

0.001

0.0001

I e-05

le.06

le-071

I I I

I e-08 10 100

k

Figure 12:(643 grid) Comparison of energy spectra for various values of CoEs with

Blaisdell's spectra at t=7

In the above figure, the Blaisdell's DNS result is indicated by the solid black
curve running all the way down. All the other curves with different symbols correspond
to simulations run using LESTool for various values of grid sensitivity parameter CDES
considered. It can be seen that when a 643 grid is used, the No Turbulence Model matches
best with the Blaisdell's result. When we look at the DES results, the curve with
CDES=0.01 almost merges with the No Model case and Blaisdell's curve. This somewhat

confirms that the LESTool has generated a DNS solution as did in Blaisdell's
simulations.

6. DNS of turbulent channel flow

The results presented in this paper were based on a direct numerical simulation of a fully

developed channel flow reported in [7]. The flow has two periodic (x and z) directions

and the solid wall condition was imposed in the y direction. The Reynolds number based

onthewall shearveiocity, u_=_[rrw/p,is R% _ .. rr 10¢_ ,1,h_,-_ 1-1 i_hnlfthe= p_,u_11 Ip, w = io,.,, ....................

channel width. The streamwise and spanwise dimensions of the channel are 4;rH and

2_rH, respectively. The computation is carried out on a grid using 200x 121 x200 grid

points in x, y, and z, respectively. The flow field is initialized with a laminar solution

and random fluctuations are superimposed on the pressure field. The governing equations

are then integrated in time until a statistical equilibrium is reached (tu_ /H > 30 ).



Figure13showsthedimensionlessvelocity, u ÷ = u/u_, plotted against dimensionless

wall distance, y+ = yu_ /v . Also shown in this figure is the comparison of the predicted

mean velocity profile against the data cited in [8] for the same Reynolds number. The

dotted line represents the desirable profile in the viscous sublayer, u ÷ = y+ , and the

dashed line denotes the log-law line, u ÷ = In y+ /0.41 + 5.2. The figure shows that the

current mean velocity profile matches the data ofKim et al. [8] very well. The

comparison of the rms values as shown in figure 14 of the velocity shows good

agreement with the data of Kim et al.
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Figure 13: Mean velocity profiles, solid line, LESTool; circled symbols, DNS ofKim et

al.; thin dashed line, viscous sublayer; tick dashed line, log layer.
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7. Simulation of a flow over a cylinder

A more complex basic flow is flow over a cylinder. This is an informative test case for

investigating DES, as many of the flow characteristics that have been measured in

experiments are not captured by traditional RANS techniques. A critical consideration

when working with DES is proving to be grid construction - fundamentally, the local grid

dimensions control the location of the transitional region where DES switches from RANS

to LES mode. Strelets discusses the challenge of grid design in the conclusion of his 2001

paper [16]. Howevere,, it is not yet clear if there is in general a truly grid-independent

solution with DES. Rather than asymptotically approaching a single, grid-independent

result, sufficiently fine grid outputs might only be confined to a definable range of

solutions. This presents an additional challenge to the validation process for Detached-

Eddy Simulation and expands considerably the number of simulations necessary to

concretely define the advantages and limitations of DES. In figure 15 lines of the vorticity

are shown. This shows that the shear layer starts to become turbulent. Further

calculations are needed to determine the influence of grid resolution on the performance
of the DES mode.

.,_)_ 5
z

!

\

!

- -" : _a i-.-7-_-_S.

Figure 15: Vorticity contours of flow around cylinder

8. PaK-B blade cascade simulations

In the current study, the cascade flow is simulated for the PakB blade. The grid resolution

is 200xl00xl00, shown in Figure 16. The blade Reynolds number in the simulations is

25,000. This is typical Reynolds number for high altitude aircraft engines. This case is

perfect for the application of Large-Eddy simulation (LES) or Detached Eddy simulation

(DES) since the Reynolds number is relatively low, so the resolution requirements are not

as demanding as for the design point. A large separation region is visible starting at about

60% of the axial cord and extending to the end of the blade. The flattened region or plateau,



between60%and 90% of the axial cord,showstheregionof boundarylayer separation.

Thenumericalresultsof this studyarecomparedwith theexperimentalcase

of Bons[3].

Figure16:3Dview of thegrid.

In the inflow plan(greyplanein figure 16)arandompressurefield is prescribedto
simulatetheunsteadyturbulent inflow. Theblade,shownin redhaswall boundary
conditionsandthegreenplaneshowstheoutflow condition.Thesimulationis initialized
with ahomogeneousturbulencefield asdiscussedin Chapter6.

In figure 17, the averagedsolutionof thevelocity filed in themid planeis shownandthe
comparisonof thetime-averagedpressurecoefficientis shownin Figure 18. The
comparisonwith the experimentaldataseemsvery good.

Figure 17thetime-averagedsolutionof thevelocity vectorat thecenterplane.
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Appendix II - UNCLE



A Center Pressure Based Method for Two/Three-Dimensional Unstructured

Incompressible Navier-Stokes Solver

Abstract

A center pressure based method is presented in this paper, and which has been implemented

into a new two/three-dimensional parallel unstructured CFD code, UNCLE, which is developed

at the University of Kentucky to meet the challenges of physical problems with complex

geometries and complicated boundary conditions while maintaining high computational

efficiency. Good load balancing across computational nodes is achieved by using METIS. In

order to demonstrate the accuracy and performance of center pressure based method, several test

cases are presented for validation such as two-dimensional incompressible flow past a flat plate,
two/three- dimensional driven cavity flow, and two/three- dimensional flow over a circular

cylinder. Notably, an extensive qualitative and quantitative study of two-dimensional flow over a

circular cylinder for low Reynolds number is also presented in this paper.

I Introduction

Continual improvements in computer technologies and computational fluid dynamics

(CFD) algorithms have established CFD codes as a reliable tool for fundamental research or

industrial applications. To deal with increasing grid sizes and demands for faster output, parallel

computation of CFD has become a standard approach. To deal with the different challenge

presented by some physical problems with complex geometries and complicated boundary

conditions is now approached through unstructured CFD grids due to their ability to smoothly,

conform to complicated boundaries. However, combining unstructured grids with a parallel code

presents still other challenges, such as achieving well-balanced grid decomposition on a

distributed system and efficient parallel performance. In order to meet these challenges, a center

pressure based method has been implemented into a new parallel unstructured CFD code called

UNCLE, which has been developed at the University of Kentucky. UNCLE is designed to meet

the challenges of using unstructured grid codes on high-performance parallel computers. It is a

two/three-dimensional finite volume unsteady incompressible Navier-Stokes solver with center

pressure based SIMPLE algorithm with second order accuracy in both time and space. To

increase flexibility in complex geometries, center pressure based method is extended to use a

variety of grid types, such as triangular, quadrilateral, tetrahedral, and hexahedral meshes. To

obtain good load balancing across computational nodes, METIS [1] is applied for domain

decomposition. METIS is a set of programs for partitioning graphs and finite element meshes,

and for producing fill-reducing orderings for sparse matrices. The algorithms implemented in
ir_,_,o t._.,A .-_,,IG1 .... 1 ar_nh nnrtltionino ._chemes. The key features of METIS include

IVllff.,llO ai_ t)a_t..,u on tJau****_,,_,. _*_F'*F ........... ca -

extremely fast partition, high quality partitions, and low fill orderings. The parallel construction

of UNCLE is based on message passing interface (MPI) protocols and has worked successfully

on systems ranging from commodity PC clusters up to traditional supercomputers. In order to

demonstrate the accuracy and performance of center pressure based method, several test cases

are presented for validation such as two-dimensional incompressible flow past a fiat plate,



two/three-dimensionaldriven cavity flow, and two/three-dimensionalflow over a circular
cylinder.

2 Numerical Methods

A center pressure based method for two/three-dimensional finite volume unstructured

incompressible Navier-Stokes solver for steady/unsteady flow fields is presented in this paper. It

is center pressure based SIMPLE algorithm with second order accuracy in both time and space.

In order to compute numerical flux on interfaces, a second order upwind scheme is adopted to
compute advection terms and second order central difference scheme is used for diffusion terms.

Non-staggered grids with the Rhie and Chow momentum interpolation method [2] is employed
to correct the checkerboard solution in the SIMPLE scheme.

2.1 Governing equations

The governing equations for unsteady incompressible viscous flow under the assumption of no

body force and heat transfer are as below.

Conservation of Mass

Conservation of Momentum

Conservation of Energy

(1)

_ fpEdV=-_pu, n, E_-_pujn, dS+_u, r0n, dS (3)

where p is density, p is pressure, u_ is component of velocity vector, ni is unit normal vector of

the interface, xij is tensor of shear force, and specific internal energy E = e +'(u 2 + v2+ w2). Notably,
density is constant for incompressible flow.

2.2 Convective and diffusive fluxes

Figure l(a) shows the schematic diagram for integration area for convective fluxes. By using

Taylor series expansion, flow properties on the interface can be obtained by Eq. (3).

¢_.s= ¢_,+___ (_: -x_,)

- .I

+--_ (yf-yp,)+ °_-_zp,(z:- zp,)+ HOT



¢_'_' = ¢,, + _--]z_(x: - x,,) (3)

+ O_e2(Y y - Ye2)+ OO_z, (Z / - Zl,,)+ HOr

where ¢ stands for the velocity components and pressure, the superscript RHS and LHS denote

the approximation from the right-hand side and left-hand side of the interface respectively, and

HOT represents higher order terms. By substituting Eq. (3) into Eq. (4), interfacial flow

properties Cf can be obtained.

¢/ =l (¢pa_s+¢Lns)_lsign(1,rh)(¢ms_qkucs ) (4)

The gradients at the nodal points (cell centers) are evaluated by the Gauss's divergence theorem
as below.

J av-- ]'¢.,aA
' _ (5)

N_

0¢ A,
Oxj V

where Nface is the total number of interfaces of the cell and V denotes the volume of the control
volume cell.

The schematic diagram for diffusive fluxes is shown in Fig l(b). The gradients at the interface

can be evaluated by using Chain rule as Eq. (6).

o¢ = o¢ o_ + o¢ o_ + o¢ o_
Ox OfOx O_Ox O(Ox

a¢ _ a¢ of + ao a_ + a¢ a( (6)
Oy af oy o,7o), a( Oy

o¢ _ o¢ of + o¢ oq + o¢ o(
Oz Of Oz o,_ Oz O( Oz

where the local coordinate system (f,r/,()is defined by the type of mesh separately.

For triangular mesh in Fig. 1(b), _' is the vector form nodal point P1 to Pz, r/is the vector from

vertex VI to VI, and f_ is the integration area for diffusive fluxes. The diffusive fluxes can be

approximated by Eq. (7).

(,) 1
/ = _-_ [(¢e, - Ce,)(Ye, - Ye, )- (¢v, - Cv, )(Yv_ - Yv, )] (7)

_- : _ -_[(¢,, - 0_,)(x,, - x_,)- (¢_, - ¢_,)(x_, - x_,)l

where ¢t,_ denotes the properties at nodal points and Cv_denotes the properties at vertices.

The values of vortices are obtained by averaging surrounding nodal value, in which inverse

distances from all surrounding nodal points are considered as weighted function.

2.3 Center pressure based SIMPLE algorithm

By using an initial pressure field, F', we can obtain un, v n, and w n by solving the momentum

equations in an tmcoupled form. The momentum equations can be written in the form as Eq. (8).



acAu = Z anbAU + RHSu

"_ (8)
a_Av = _ a,_Av+ RHS v

nb

a,.Aw = Z a,_Aw + RftS_.
nb

where the coefficients anb and ac are

a,b = max(-rh/,0) + fly (_xna + _yn 2 + (zn3)A ,

a,, = _.anb ,
nb

and the RHS term can be written as

RHS. -_'_[m,u, (r" "_ A
##1

N _ n

i=l ' OX

=- Zlm,v: -: l., ),., l
1=1

Nf,,_

i=I

N_ n

=-_[m:;-(T,"_I.,.]4-(T_.,..4-(:_. AI-_P"v
\ 331i &3"_ _ c

_=1

where subscript c denotes the cell we are solving, subscript nb denotes the neighbor cells, and A

denotes the interfacial area. In this paper, we solve Eq. (8) by using Gauss-Seidel method. Then,

we can obtain u*, v °, and w* by Eq. (9).
U" =U n +At/

v" = v" + Av (9)

W* = W" + AW

Although at this stage u*, v*, and w* satisfy the momentum equations, they do not necessarily

satisfy the continuity equation. In order to satisfy the mass conservation, one has to interpolate

the velocity to the interface.

However, this interpolation will lead to the checkerboard solutions. In order to avoid the

checkerboard solutions, one has to allow the interfacial velocity to be driven solely by the

pressure difference. To achieve this aim without sacrificing the accuracy, one can divide the

interpolated interracial velocity into two components: one is the velocity component without the

pressure contribution and the other is solely the pressure contribution. The former, which is at

the cell center, can be written as:

_. =_.+Op___2"_
Ox a¢

V'=v'-_ Op" V_ (|0)

Oya_

_," = w" ÷ OP" V_
Oza¢

The latter is obtained directly from the pressure difference of the two adjacent nodal points, P]

and P2 such that the interfacial velocity can be expressed as:



t, & J: ai

V" (ap"] v: (11)

t. oz ): as

Where Vs and as are obtained by interpolation to the interface.
$ $

We further assume that there are corrections to u: , vf, and wf*, such that the continuity equation

can be satisfied by using Eq. (12).

t * t

p[(u"s + AU's)n, +(v'_+ avs)n 2+(w: + Aw:)ndA = 0 (12)
i=1

We can rewrite Eq. (12) as

N.t-_, N£
s t * * *

_ p[Au_.n, +Avsn2+WxndA = - (13),o[uin, +vs.n 2 + wsn3]A
/=1 _=l

where the right-hand side in Eq. (13) represents the mass imbalance in the control volume cell.

One assumes there is a corresponding pressure correction field, p', which drives the velocity

corrections according to:

, :ap"_ vs. v: , ,
Aus.'_-t'--i_ )/-_i "--_S _'(pI>'-p4)

(14)
Av,i __(Op'_ VS. V/ , ,--'_---_y(PP, - P4)

t ay ): a: a:

= --=---g:fPs>, -P4)
t, & ):as. as.

By substituting the velocity correction equations into the equation for the mass imbalance, we

can obtain the equations of the pressure correction:

a:p'= = __, a._p'.b + b (15)
nb

were anb and at in the continuity equation are

and

V. V. V.

a._= _-.z-'_n_+---L_n_+---_-'_:dA '
as as as

ac =Zanb '
nb

b =-_'_p[u'in , +v'sn _ + w'sn3]A"
nb

Once the pressure correction is obtained, one can update the pressure field by:

p.+, p. (16)= + t_pp'

where tZp is the unaer-reiaxauo,"" -_':-- _'_+"",,,.,,,.for pressure and is generally with a value of 0.5-0.8. Then

the velocity correction on the interfaces as well as nodal points will be updated.



2.4 Partitioning approach

Figure 2 shows the schematic diagram of partitioning approach for center pressure based method,

which is also implemented into UNCLE. In Fig. 2, blue points indicate vertices, red points

indicate nodal points, and white points indicate the boundary points. By using this approach, the

control volumes on the boundary are not split. Only communication of nodal values is needed for

parallel computation which makes the implement of MPI in an unstructured grid more

straightforward.

Excellent load balancing between the subgrids on each node is achieved through using

METIS for domain decomposition. METIS can partition an unstructured grid into any integer

number of zones without losing load balance. It is compatible with many platforms, convenient

for running CFD codes on a variety of supercomputer to cluster architectures. Present

partitioning approach has been tested by a number of two/three-dimensional geometries. All

results show good load balances. In order to demonstrate the capability of this partitioning

approach, this paper will present two cases---one is the grid for two-dimensional flow over

circular cylinder in triangular mesh, and the other is the grid for three-dimensional flow over a

circular cylinder in tetrahedron mesh. The definition of load-imbalance rate LZMI_ and load-

balance rate LB in this paper is defined as Eq. (17) and (18).

N.oae-N (17)La,m - '_ :<100%
N_

LB = 1-La_ (18)

where N,,oae is grid size of the node and N,_g is the average grid size. By using load balance rate,

we can compare the load balance quantitatively.

Figure 3(a) shows the partitioned grid for 2D flow over a circular cylinder in triangular mesh.

The number of total grid points is 51,363 and the number of total cells is approximately 0.1M.

The grid is partitioned to 16 zones for parallel computation. The cell distribution is not uniform,

denser near the cylinder and coarser away. The load-balance distribution on each node is shown

in Fig. 3(b). The x-axis indicates the node number and the y-axis indicates load-balance rate. The

resulting load-balance rates are very close to 100% on every node with an average load balance

rate of 98.37%. Figure 3(c) shows a partitioned grid for three-dimensional flow over circular

cylinder with the internal grid distribution visible in a cut-away. The number of total grid points

is approximately 0.3M and the number of total cells is approximately 1.3M. In this case, the grid

is partitioned to 32 zones. The average load-balance rate is 97.9%. Our test results show that

present partitioning approach has excellent load balance in two/three-dimensional grids with

various types of meshes by using METIS for domain decomposition.

2.5 Time discretization

In this paper, a second-order fully implicit scheme is employed for the temporal discretization. In

here, we take a one-dimensional equation example:

3fk"÷'-4_" +fk"-' _ Of(_k"*') = 0 (19)
2At /5c

where # is primitive variable, f is interracial flux, and the superscript n indicates the index in

time. A deferred iterative algorithm is employed to obtain (+1 by substituting (20) into (19),

(#"+')'+' = (#"+')- + (A#)" (20)

where the subscript m stands for the sub iteration level. The final equation is



3(A¢)" _/(A¢)"
t

2At 0x (21)

(¢"-¢"-') 3((¢"+')'-¢ ") 0f((¢"+') ")

2At 2At Ox

The right-hand-side of Eq. (21) is explicit and can be implemented in a straightforward manner

to discretize the spatial derivative term. The deferred iterative algorithm is strongly stable, and

the solution ¢,+s is obtained by using inner iterations to reach the convergent solution of the

right-hand-side of Eq. (21), which means A¢ is approximate to zero. A sub-iteration is performed

at every time step so that this method is fully implicit.

3 Results

3.1 Two-dimensional laminar incompressible flow past a flat plate

In this case, two-dimensional laminar incompressible flow past a flat plate is simulated. The

schematic diagram including geometry and boundary conditions is shown in Fig. 4. A uniform

free stream boundary condition is imposed on the inlet. Because of the viscous effect, the

laminar boundary layer begins to grow at the position x=0 on the plate. The initial condition for

the entire computational domain is uniform free stream. A quadrilateral mesh of 600x200 is used

for both Reynolds number (Re) at 5,000 and 50,000 based on a non-dimensional length scale of

unity. The minimum distance from the wall is 5x10 "5 (corresponding to y+=0.1) which is fine

enough to capture the phenomena within the boundary layer. In this case, the computational

domain is divided into 16 zones. The parallel computation is performed on KFC3a, a 16 nodes

PC cluster with Pentium IV 2.4 GHz CPU and gigabit network developed at the University of

Kentucky. The results of this computation are compared to the standard Blasius solution for a

laminar flat-plate boundary layer. Figure 5(a) shows the r/--yRf'_/x versus u/U plot at x=4.5

from present results for Re=5,000 and 50,000 in comparison with Blasius solution. Both present

results are good agreement with Blasius solution. Figure 5(b) shows the plot of momentum

thickness (Re0) versus coefficient of skin friction (cf) with present results and Blasius solution.

Good agreement is obtained by comparing our present results with Blasius solution.

3.2 Two-dimensional driven cavity flow

In this section, two-dimensional incompressible flow in a square cavity at a Reynolds number of

400 is simulated. The fluid in the cavity is driven by a moving top with constant speed. Because

driven cavity flow lacks an exact solution, an existing accurate numerical solution for this

problem is used as a benchmark for comparing our results. Ghia et al. [3] presented numerical

studies using the vorticity-stream function formulation for solutions up to Re=10,000 with

257x257 grid points, and these simulation results have been widely used as a benchmark for the

dri,/en cavity problem. The schematic diagram of this case with geometry and boundary

conditions is shown in Fig. 6. The initial condition for the entire compu,,_,,,,,,,:_-"! dom_i,,........ it

stationary everywhere. In order to compare Ghia's results, the number of grid points used is

257x257 or 66,049 and 65,536 cells are used in a quadrilateral mesh. For a triangular mesh,

66,546 cells, which is approximately the same as quadrilateral mesh, and 33,618 grid points are

used in our computation. Figure 7(a) shows the u-velocity profile along the horizontal center line

for both present results with quadrilateral and triangular mesh and Ghia's result. Both present



resultsare in goodagreementwith Ghia's result.It also showsthe presentsolution is identical
andis independentof meshtypes. Figure7(b) showstheu-velocity profile alongthehorizontal
center line; again, the results match. Figure 8 presentsthe u- and v-velocity contoursand
streamlineplot from the presentresultson thequadrilateralmesh.In Fig. 8(a), the u-velocity
contoursrangesfrom -0.33 to 1.0with 100intervals.Solid lines indicatethepositivevaluesand
dashedlines negativeones.In Fig. 8(b), the v-velocity contoursrangesfrom 0.64 to 0.31with
100intervals.Theflow structuresincludingthelocationof themajorvortexcenter,thebubblein
theright bottomcomer,anda smallbubblein the lett bottomcomerareshownclearly in Figure
8(c),andarein goodagreementwith theresultsof Ghia.

3.3 Three-dimensional driven cavity flow

The three-dimensional version of the preceding problem is also a standard case for a new flow

solver. In 1987, Ku et al. [4] simulated three-dimensional flow in a cubic cavity by using

pseudospectral methods to solve the Navier-Stokes equations for Re = 100, 400, and 1000. In

2003, Shu et al. [5] repeated this problem by using the SIMPLE algorithm with the differential

quadrature (DQ) method. They simulated the three-dimensional driven cavity flow at Re = 100,

200, 400 and 1000 and compared their results with Ku's results. In this section, we simulated this

problem at Re = 400 and compared our results with those of Ku and Shu. In order to validate the

results with different meshes, two grids are used to study this problem. One is a hexahedral mesh

with 67x67x67 grid points and 287,496 cells, and the other is a tetrahedral mesh with 79,951 grid

points and 446,953 cells. The geometry of this problem is a unit cube. The boundary condition at

the y = 1 plane is uniform flow with u=l, v=0, and w=0, and all other boundary conditions are

no-slip walls. The initial condition for the entire computational domain is stationary. Figure 9(a)

shows the u-velocity profile at the horizontal centedine of the z = 0.5 plane for the present

hexahedral and tetrahedral mesh results as well as those of Ku and Shu. Figure 9(b) shows the v-

velocity profile at the vertical centerline ofz -- 0.5 for the same set of simulations. Both present

simulations show essentially identical solutions, and both are in good agreement Ku and Shu.

Figure 10 shows the velocity vectors and pressure contours taken from the present simulation

using the hexahedral mesh on the z=0.5, x=0.5, and y=0.5 planes respectively. As before, for the

pressure contours dashed lines mean negative values. The established flow structures including

the locations of the vortex center and the positive and negative regions in each plane are clearly

visible and in good agreement with Ku's and Shu's results.

3.4 Two/Three-dimensional incompressible flow over a circular cylinder

Flow over a circular cylinder is a standard unsteady test problem. Many two-dimensional

numerical studies have been done on this flow. In 1990, Rogers and Kwak [6] studied flow over

a circular cylinder for Re = 200 using an upwind differencing scheme to solve the

incompressible Navier-Stokes equations. They compared their results, which were obtained

using 3rd order and 5th order upwind differencing schemes, with computational and

experimental results, in i995, Ku [7] _,-u_,_,_-'-'-_:_'_"_o_111_preb!em ___fnrReynolds numbers 100, 250, 500,

and 1,000 using a pseudospectral element method. Alonso et al. [8] studied the vortex shedding

over a circular cylinder at Re = 500 with a multigrid unsteady Navier-Stokes solver with a flux-

limited dissipation scheme in 1995. In 1998, Liu et al. [9] used preconditioned multigrid methods

to study unsteady incompressible flows. They investigated flow over a circular cylinder at Re =

200 and their results was in good agreement with other computational and experimental results.



In 1999,Ronaldet al. [10] reportedtheir resultsfor this problemat Re= 300 usingthe NASA
FUN2D code.A final exampleof two-dimensionalcylinder flow simulationis the work of Qian
andVezza[11] studiedflow overa circularcylinderproblemat Re= 1000with avorticity-based
methodin 2001.

Examplesof three-dimensionalnumericalstudiesof flow over a circular cylinder are the studies

of Braza and Persillon [12] and Henderson [13]. There are also many experimental studies of

flow over cylinder problems such as Roshko [14], Wille [15], and Williamson [16], [17].

According to Williamson [16], the phenomena of flow over a circular cylinder can be classified

by Reynolds number. Williamson found the laminar vortex shedding region to occur for

Reynolds numbers between 49 and 140-194. The three-dimensional wake transition region

occurs for Re - 190 to 260. For the range between Re = 260 - 1000, the three-dimensional

disorder of the wake begin to increase in at the fine scales. This evolves into the shear-layer

transition regime for Reynolds numbers 1,000 up to 20,000. He also noted that three-dimensional

effects occur for Re > 190. Further detailed explanations of the remaining regimes are reported in

Williamson [16]. To date, most numerical studies about this problem only focused on a single

Reynolds number and either two-dimensional or three-dimensional simulations exclusively. The

current results encompass Reynolds numbers 100, 200, 300, 500, 1,000, and 1500 for two-
dimensional simulations and 100 and 200 for three-dimensional simulations. These results are

compared with the appropriate previous studies as well as current results cross-comparisons to

examine the dimensional and flow regime effects.

Figure 11 shows a schematic diagram for flow over a circular cylinder with dimensions and

boundary conditions. For three-dimensional simulation, the span of the cylinder is 10D, with D

representing the reference length equal to the diameter of the cylinder. The boundary conditions

at z = 0 and z = -10D are periodic, eliminating end effects. The initial condition for the entire

domain is uniform flow as inflow for all simulations and the time step is 0.005 for all cases. The

grid for two-dimensional simulations is a quadrilateral mesh with 22705 cells and 22925 grid

points; for three-dimensional simulation, a hexahedral mesh with 1.13M cells and 1.17M grid

points is used. Both grids are densely distributed near the cylinder and wake region and coarser

near the outer region. All of the two-dimensional simulations are performed on the KFC3a

cluster with 16 nodes, and all three-dimensional simulations are performed on KFC2, a 48 node

commodity cluster with AMD Athlon 2000+ CPU and a channel-bonded network. It is noted that

each three-dimensional simulation took approximately one week with 32 nodes on KFC2. Figure

12 presents the coefficient of Lift (CL) and the coefficient of drag (Co) unsteady histories of the

present two-dimensional simulations for Re = 100, 200, 300, and 1,000 respectively. The

Strouhal number (St) for these data sets is derived from the frequency of CL. In our simulations,

higher Reynolds number cases achieve steady Strouhal numbers faster than lower Re cases,

consistent with other computational results. Table 1 presents the summary of our present two-

and three-dimensional results along with other computational and experimental results. As

shown in Table i, our current _u,_"- _,,.,,,,'1"....... _,,v,.n agre,-_,,nt............ with previous data by. comparing St,

CL, and Co. Fig. 13 shows the two-dimensional vorticity contours for Re = 100, 200, 300 and

1000. In Fig. 13, the contours are range from -0.3 to 0.3. The three-dimensional 03z contours from

the current simulations are similar to those generated by the two dimensional test cases. As seen

in Fig. 13, the vortex shedding frequency increases as Re increases. For Re = 100, the vortices

decay in the downstream. Because of the limited computational domain, we do not see the vortex



structuresmergeto largescalevorticesin our simulation.For Re= 200,500and 1000,not only
doesthevortex strengthdecay,but also the vortex structures collapse in the far downstream and

start to merge to large scale vortices. This same phenomenon is reported by Inoue and Yamazaki

[18].

Figure 14(a)-(c) show the present three-dimensional results of COx,COyand COzfor Re = 100 and

(d)-(f) for Re = 200 in the y = 0 plane. The contours of COxand COyrange from -0.0005 to 0.0005

for Re = 100 and from -0.02 to 0.02 for Re = 200, and the contours of COzrange from -0.3 to 0.3

for both cases where bright regions correspond to positive values and dark regions correspond to

the negative values. Obviously, the magnitude of COzis much larger than the magnitudes of COx

and COy.For Re = 100, we can see that the magnitude of COxdecreases in the upstream and the

local minimum appears at the position of 5th "roll" in Fig. 14(a). After that, the magnitude of O)x

begins to grow. In Fig. 14(b), the magnitude of COygrows after the flow past the cylinder. The

thickness of the vortex "roll" increases downstream. From Fig. 14(c), the magnitude of COzdecays

after the flow past the cylinder due to the energy dissipation. Because the three-dimensional

effects are very weak at Re = 200, the three-dimensional outcome is very similar to two-

dimensional case. For Re = 200, as seen from Fig. 14(d), the magnitude of COxdecreases in the

beginning and the local minimum also appears near the 5th "roll". In the far downstream, a

transition zone is observed, after which the vortex scales transit from small to large scales. In

Fig. 14(e), unlike Fig. 14(b), wavy vortex structures are observed. Figure 14(f) shows that 0_z

decays after the flow past the cylinder. Figure 15 shows the iso-surface of vorticity magnitude

for Re = 200 from the present three-dimensional simulation result. The flow structures,

especially the vortex streets in the wake regions, observed in our present results are in good

agreement with other simulation results.

4 Conclusions

A center pressure based method is presented in this paper, and which has been implemented

successfully to a new two/three-dimensional parallel unstructured incompressible Navier-Stokes

solver, UNCLE, which has been developed at University of Kentucky. Implementation of using

different types of meshes with center pressure based method is feasible and straightforward. In

order to increase flexibility in complex geometries, center pressure based method has been

extended to use a variety of grid types, such as triangular, quadrilateral, tetrahedral, and

hexahedral meshes. Mesh independent tests are also made to prove that current method can

generate identical solutions for different mesh types. By using METIS for domain

decomposition, excellent parallel load balance is achieved. In this paper, several test cases are

presented--laminar incompressible flow past a flat plate, steady two/three-dimensional driven

cavity flow, and unsteady two/three-dimensional flow over a circular cylinder for low Reynolds

numbers. All these test cases yielded good agreements in comparison with previous

compmationa! or e×pe_fimental results. A complete qualitative and quantitative study of two-

dimensional flow over a circular cylinder for low Reynolds number is presented in this paper,

which can be further used as a benchmark solution set for the development of new unsteady
Navier-stokes solvers.
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Fig. 1 Schematic diagrams for integration areas. (a) convective fluxes, and (b) diffusive fluxes.
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Fig. 2 A schematic diagram of cell-centered partitioning approach



Fig. 3(a) Partitioned triangular mesh for 2D flow over a circular cylinder

Fig. 3(b) Load-balance distribution on each node in parallel computation

Fig. 3(c) Partitioned tetrahedral mesh for 3D flow over a circular cylinder
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Fig. 4 Schematic diagram of laminar incompressible flow past flat plate
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Fig. 7(a) The u-velocity profile along the horizontalcenterline for presentresultsand Ghia's
result.
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Fig. 7(b) The v-velocity profile along the vertical center line for present results and Ghia's result.
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Fig. 8(a) The u-velocity contour plot for two-dimensional driven cavity flow at Re=400.
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Figure 9(a) The u-velocity profile at the horizontal centerline of z=0.5 plane with present results

in hexahedral and tetrahedral meshes, and also Ku's and Shu's results.



0.4

0,2

0

-0.2

-0,4

-- present result - hexal_lra

...... present - llllahedron
[] Ku et al

0.2 0.4 0.6 0.8

X

Figure 9(b) The v-velocity profile at the vertical centerline of z=0.5 plane with present results,
Ku's and Shu's results.

(a)

y

(b)



(c)

• t
• L

s

(d)

? ]i!'

- r i: i i I I

Y

(e)

,i

i , , 'i̧ i _! i ....

N

(f)
Figure 10(a)-(c) The velocity vector and (d)-(f) pressure contours from present results with

hexahedral mesh at z=0.5, x=0.5, and y=0.5 planes respectively.
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Fig. 11 Schematic diagram of flow over a circular cylinder with dimensions and boundary
conditions
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Fig. 12 CL and CD history plots of two-dimensional simulation for (a) Re--100, (b) Re=200, (c)

Re--300, and (d) Re=1000.
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Fig. 13 Vorticity contours for two-dimensional simulation. (a)Re=100, (b)Re=200, (c)Re=300,

and (d)Re=1000.



N-5

-10
0 10 20 _ 40

X

(a)

0 10 20 _ 40 50
X

(b)

°/IllIlll N-5

-10
0 10 20 30 40 50

X

(c)

N-5

-10
0 10 _ 30 40 50

X

(d)

N-5

-10
0 10 20 30 40 50

X

(e)

°/lllllll ]N -5

-10
0 10 20 30 40 50

X

(f_
Fig. 14 Vorticity component contours for three-dimensional simulation at y=0 plane, where (a)-

(c) co×, my, and mz for Re=100 and (d)-(f) cox, my, and mz for Re=200.

Fig. 15 The iso-surface of vorticity magnitude for Re = 200 from present three-dimensional

simulation result.



Table 1 Summary of present results and other computational and experimental results

Re 100 2011 300 500 10011 1500

Present CL=+_0.314 CL=-+0.642 CL=-+0.869 CL=_+I.115 CL=+1.378 CL=+1.553

2D results Co=1.325_0.008 CD=1.318_0.04 CD=1.354_0.072 Co=1.406+0.119 CD=1.489+0.198 Co=1.575+0.247
St=0.165 St=0.196 St=0.21 St=0.224 St=0.239 St=0.246

Present CL=_0.322 CL=_0.664

3D results CD=1.327+_0.009 CD=1.324+0.042

St=0.164 St=0.195

Computational 2D results
Rogers and CL=+0.65

Kwak [6] CD=1.23+0.05
(5 th order) St=0.185

Alonso et

al. [7]

Ku [8] CL=+0.228

CD=1.33--1.358
St=0.1675

Liu et al. CL=_+0.69

[9] CD=1.31_+0.049

St=0.192

Ronald et CL=_+0.841
al. [10] CD=l.34

St=0.2036

Qian and

Vezza [11]
Computational 3D results

Braza and St=0.202
Persillon

[12l

Henderson St=0.178

[131

Experimental results

CL=_+1.046

Ct)=1.217
St=0.224

CL=+1.03

CD=1.212--1.481
St=0.2203

CL=_+1.242

CD=1.187-1.651
St=0.2326

Co=1.52

St=0.24

Roshko

[14]

Wille [15]
Williamson

[16]
Williamson

[17]

St=0.19

CD=I.3

St=0.166 St=0.203

St=0.197

CD=I.2
St=0.21


